Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 26(4): 241-248, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36573320

RESUMO

BACKGROUND: The serotonin system has been implicated in several psychiatric disorders. All major psychiatric disorders are associated with cognitive impairment, but treatment improving cognitive deficits is lacking, partly due to limited understanding of the neurobiology of cognitive functioning. Several markers for the serotonin system have been associated with cognitive functions. Our research group previously has reported a positive correlation between serotonin (5-HT1B) receptor availability in the dorsal brainstem and visuospatial memory in a pilot study of healthy individuals. Here, we aim to replicate our previous finding in a larger group of healthy volunteers as well as to investigate putative associations between 5-HT1B receptor availability and other cognitive domains. METHODS: Forty-three healthy individuals were examined with positron emission tomography using the 5-HT1B receptor radioligand [11C]AZ10419369 and a visuospatial memory test to replicate our previous finding as well as tests of verbal fluency, cognitive flexibility, reaction time, and planning ability to explore other domains potentially associated with the serotonin system. RESULTS: Replication analysis revealed no statistically significant association between 5-HT1B receptor availability in the dorsal brainstem and visuospatial memory performance. Exploratory analyses showed age-adjusted correlations between 5-HT1B receptor availability in whole brain gray matter and specific brain regions, and number of commission errors, reaction time, and planning ability. CONCLUSIONS: Higher 5-HT1B receptor availability was associated with more false-positive responses and faster reaction time but lower performance in planning and problem-solving. These results corroborate previous research supporting an important role of the serotonin system in impulsive behavior and planning ability.


Assuntos
Receptor 5-HT1B de Serotonina , Serotonina , Humanos , Radioisótopos de Carbono , Projetos Piloto , Morfolinas , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Cognição
2.
Mol Psychiatry ; 26(5): 1647-1658, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32848204

RESUMO

Impairments in social interaction and communication, in combination with restricted, repetitive behaviors and interests, define the neurodevelopmental diagnosis of autism spectrum disorder (ASD). The biological underpinnings of ASD are not well known, but the hypothesis of serotonin (5-HT) involvement in the neurodevelopment of ASD is one of the longest standing. Reuptake through the 5-HT transporter (5-HTT) is the main pathway decreasing extracellular 5-HT in the brain and a marker for the 5-HT system, but in vivo investigations of the 5-HTT and the 5-HT system in ASD are scarce and so far inconclusive. To quantify possible alterations in the 5-HT system in ASD, we used positron emission tomography and the radioligand [11C]MADAM to measure 5-HTT availability in the brain of 15 adults with ASD and 15 controls. Moreover, we examined correlations between regional 5-HTT availability and behavioral phenotype assessments regarding ASD core symptoms. In the ASD group, we found significantly lower 5-HTT availability in total gray matter, brainstem, and 9 of 18 examined subregions of gray matter. In addition, several correlations between regional 5-HTT availability and social cognitive test performance were found. The results confirm the hypothesis that 5-HTT availability is lower in the brain of adult individuals with ASD, and are consistent with the theory of 5-HT involvement in ASD neurodevelopment. The findings endorse the central role of 5-HT in the physiology of ASD, and confirm the need for a continued investigation of the 5-HT system in order to disentangle the biology of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
3.
Int J Neuropsychopharmacol ; 22(4): 278-285, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649319

RESUMO

BACKGROUND: The in vivo binding of clinical dose of venlafaxine on norepinephrine transporter has been questioned because venlafaxine has higher in vitro affinity to serotonin transporter than that to norepinephrine transporter. Although serotonin transporter occupancy of clinically relevant doses of venlafaxine has been reported, there has been no report of norepinephrine transporter occupancy in the human brain. METHODS: This was an open-label, single center, exploratory positron emission tomography study. Twelve major depressive disorder patients who had responded to venlafaxine extended-release and 9 control subjects were recruited. Each subject participated in one positron emission tomography measurement with [18F]FMeNER-D2. Binding potential in brain was quantified by the area under the curve ratio method with thalamus as target and white matter as reference regions. The difference of binding potential values between control and patient groups divided to 2 dose ranges were evaluated. Norepinephrine transporter occupancy (%) for all the major depressive disorder patients was calculated using mean binding potential of control subjects as baseline. The relationships between dose or plasma concentration of total active moiety and occupancies of norepinephrine transporter were also estimated. RESULTS: The binding potential of the patient group with 150 to 300 mg/d was significantly lower than that in the control subjects group (P = .0004 < .05/2). The norepinephrine transporter occupancy (8-61%) increased in a dose-dependent manner although a clear difference beyond 150 mg/d was not observed. CONCLUSIONS: This study demonstrates that clinically relevant doses of venlafaxine extended-release block the norepinephrine transporter of the major depressive disorder patient's brain. The data support the notion that the antidepressant effect of venlafaxine involves a combination of serotonin transporter and norepinephrine transporter blockades.


Assuntos
Encéfalo/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Cloridrato de Venlafaxina/farmacologia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Preparações de Ação Retardada , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Morfolinas , Tomografia por Emissão de Pósitrons , Inibidores da Recaptação de Serotonina e Norepinefrina/administração & dosagem , Cloridrato de Venlafaxina/administração & dosagem , Adulto Jovem
4.
Sci Transl Med ; 10(461)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282698

RESUMO

Preliminary studies have suggested that γ-aminobutyric acid type A (GABAA) receptors, and potentially the GABAA α5 subtype, are deficient in autism spectrum disorder (ASD). However, prior studies have been confounded by the effects of medications, and these studies did not compare findings across different species. We measured both total GABAA and GABAA α5 receptor availability in two positron emission tomography imaging studies. We used the tracer [11C]flumazenil in 15 adults with ASD and in 15 control individuals without ASD and the tracer [11C]Ro15-4513 in 12 adults with ASD and in 16 control individuals without ASD. All participants were free of medications. We also performed autoradiography, using the same tracers, in three mouse models of ASD: the Cntnap2 knockout mouse, the Shank3 knockout mouse, and mice carrying a 16p11.2 deletion. We found no differences in GABAA receptor or GABAA α5 subunit availability in any brain region of adults with ASD compared to those without ASD. There were no differences in GABAA receptor or GABAA α5 subunit availability in any of the three mouse models. However, adults with ASD did display altered performance on a GABA-sensitive perceptual task. Our data suggest that GABAA receptor availability may be normal in adults with ASD, although GABA signaling may be functionally impaired.


Assuntos
Transtorno do Espectro Autista/metabolismo , Receptores de GABA-A/metabolismo , Adulto , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Azidas/farmacologia , Comportamento , Benzodiazepinas/farmacologia , Radioisótopos de Carbono , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Flumazenil/farmacologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Masculino , Camundongos , Percepção de Movimento/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Subunidades Proteicas/metabolismo , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...